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Abstract. It is well-known that each nonnegative integral flow of a directed graph can be
decomposed into a sum of nonnegative graph circuit flows, which cannot be further decom-
posed into nonnegative integral sub-flows. This is equivalent to saying that indecomposable
flows of graphs are those graph circuit flows. Turning from graphs to signed graphs, the
indecomposable flows are much richer than that of ordinary unsigned graphs. The present
paper is to give a complete description of indecomposable flows of signed graphs from the
viewpoint of resolution of singularities by introducing covering graphs.

A real flow (also known as circulation) on a graph or a signed graph (a graph with signed
edges) is a real-valued function on oriented edges such that the net inflow to each vertex
is zero. An integral flow is a flow whose values are integers. There are many reasons to
be interested in flows on graphs; an important one is their relationship to graph structure
through the analysis of (conformally) indecomposable flows, that is, integral flows that cannot
be decomposed as the sum of two integral flows having the same sign on each edge (both ≥ 0
or both≤ 0). It is well known, and an important observation in the theory of integral network
flows, that the indecomposable flows are identical to the circuit flows, which have value 1
on the edges of a graph circuit (=cycle) and 0 on all other edges. Extending the theory of
indecomposable integral flows to signed graphs, which is studied in [7] by algorithmic method,
led to a remarkable discovery that there are, besides the anticipated circuit flows (which
are already more complicated in signed graphs than in ordinary graphs), many “strange”
indecomposable flows with elaborate structure not describable by signed-graph circuits.

In this article we characterize this structure again by the method of sign-labeled covering
graphs, lifting each vertex and each edge of a signed graph to two vertices and two edges
respectively of a sign-labeled covering graph, and lifting each indecomposable flow to a simple
cycle flow in the sign-labeled covering graph. We think of the lifting as a combinatorial analog
of resolution of singularities in algebraic geometry. The strange indecomposable flows are
singular phenomena, which we resolve by lifting them (blowing up overlapped edges) to
ordinary cycle flows in a covering graph. Comparing to the algorithmic approach in [7], the
present paper hints a connection (at least conceptually) between graph theory and covering
spaces of algebraic topology and resolution of algebraic geometry. We believe that this
connection is useful to study gain graphs [14] that are more complicated than signed graphs.
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It is characterized that indecomposable integral flows of signed graphs are characteristic
vectors of certain so-called Eulerian cycle-trees (see Definition 9, Theorem 13 and Theo-
rem 15 below). The properties of Eulerian cycle-trees lead to the following half-integer scale
conformal decomposition:

Every nontrivial integral flow of an oriented signed graph can be conformally
decomposed into a positive half-integer (perhaps integer but not always integer)
linear combination of signed-graph circuit flows.

1. Graphs and signed graphs

Graphs. A graph is a system G = (V, E), with vertex set V and edge set E, such that each
edge x ∈ E is associated with a multiset End(x) of two vertices, called the end-vertices of x;
the edge x is called a link if the two vertices of End(x) are distinct, and is called a loop if the
two vertices are identical. Let x be an edge and End(x) = {u, v}; we say that x is incident
with u and v, or u and v are adjacent by x; we write (u, x) and (v, x). A tricky technical
point is that this notation does not distinguish the two end-vertices of a loop; we take an
easy way out by treating {(u, x), (v, x)} as a multiset when u = v.

A walk of length n in a graph G = (V, E) is a pair W = (u, x) of functions

u : {0, 1, . . . , n} → V, x : {1, 2, . . . , n} → E

such that the end-vertices of the edge x(i) are the vertices u(i − 1) and u(i). We write
ui = u(i), xi = x(i), and

W = u0x1u1x2 . . . un−1xnun.

A walk is said to be closed if n ≥ 1 and v0 = vn and open otherwise. A subsequence of the
form uixi+1ui+1xi+2 . . . uj−1xjuj is called a sub-walk of W . A walk is called a trail if there
are no repeating edges, except the initial and terminal vertices for closed walk (such a trail
is called a closed trail). A walk is called a path (or simple walk) if there are no repeating
vertices (and subsequently there are no repeating edges), except the initial and terminal
vertices for closed walk (such paths are called closed paths). As usual, we call a closed path
a cycle. A graph circuit is a cycle; the name comes from the fact that the cycles of a graph
form the circuits of the graphic matroid whose elements are the edges of the graph.

An isthmus (or cut-edge) is an edge whose deletion increases the number of connected
components. A cut-vertex is a vertex whose deletion, with all incident edges, increases the
number of components, or that supports a loop and is incident with at least one other edge.
A block is a maximal subgraph without cut-vertices. Thus, a loop or isthmus or isolated
vertex is a (trivial) block. We call blocks adjacent if they have a common vertex (which is
necessarily a cut-vertex). An end-block is a block adjacent to exactly one other block. For
the notions of graph theory that we didn’t define, we refer to the books [2, 3, 10]

Signed graphs. A signed graph Σ = (V, E, σ) consist of an ordinary graph G = (V, E) and
a function σ : E → {−1, 1} (signs are multiplied rather than added), called the sign function
of Σ. The sign of a walk W = u0x1u1 . . . xnun in Σ is the product

σ(W ) =
n∏

i=1

σ(xi).

In particular, a cycle has a sign, which is either positive or negative. A subgraph or its edge
set is said to be balanced if every cycle in the subgraph (induced by the edge set) is positive.
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A signed-graph circuit in a signed graph is a subgraph (or its edge set) of one of the
following three types:

(i) A positive cycle, said to be of Type I.
(ii) A pair of negative cycles whose intersection is a single vertex, said to be of Type II

(also known as a contrabalanced tight handcuff ).
(iii) A pair of vertex-disjoint negative cycles together with a simple path of positive length

(called the circuit path) that connects the two cycles and is internally disjoint from
the cycles, said to be of Type III (also known as a contrabalanced loose handcuff ).

The signed-graph circuits form the circuits of a matroid on the edge set of the signed graph
[12]. An ordinary unsigned graph can be considered as a signed graph whose all edges are
positive. When all edges are positive, every cycle is positive and the only signed-graph
circuits are those of Type I, that is, the graph circuits.

Orientation. A bi-direction of a graph (a concept introduced by Edmonds [8]) is a function
from the vertex-edge pairs to the sign group. One thinks of an edge at its one end-vertex
with either a positive sign +1 as having an arrow directed away from the end-vertex, or
a negative sign −1 as having an arrow directed towards the end-vertex. Thus each edge
is assigned two arrows, one at each of its end-vertices. Technically, a bi-direction may be
described by a multi-valued function ε : V × E → {−1, 0, +1} such that (i) ε(u, x) = 0 if
u 6∈ End(x), (ii) ε(u, x) is a nonzero value if x is a link, (iii) if x is a loop then ε(u, x) is a
multiset of two (possibly identical) nonzero values.

An orientation of a signed graph Σ is a bi-direction ε on its underground graph such that
for each edge x with end-vertices u, v (possibly x is a loop so that u = v),

σ(x) = −ε(u, x)ε(v, x), x = uv.

Then a positive edge x has two arrows in the same direction along x thus indicating a
direction along x as in an ordinary directed graph. A negative edge x has two opposite
arrows that both point away from or both point towards the end-vertices. A signed graph
together with an orientation is known as an oriented signed graph; see [5, 6, 13].

Let (Σ, ε) be an oriented signed graph throughout. A source in (Σ, ε) is a vertex u at
which all edges are directed outwards, that is, ε(u, x) = +1 for all edges x at u. Conversely,
if all edges at u point towards u, the vertex u is called a sink.

A walk W = u0x1u1x2 . . . un−1xnun of length n on an oriented signed graph is said to be
coherent at ui if

ε(ui, xi) + ε(ui, xi+1) = 0,

that is, the order of W follows the orientations of edges at the vertex ui. When W is a closed
walk, we apply this definition to u0 by taking subscripts modulo n, that is,

ε(un, xn) + ε(u0, x1) = 0.

An open walk is said to be directed in (Σ, ε) if it is coherent at its every internal vertex. A
closed walk is said to be directed in (Σ, ε) if it is coherent at every vertex, including at the
initial and terminal vertex. A direction of W is a function εW with values either 1 or −1,
defined for all vertex-edge pairs (ui−1, xi) and (ui, xi), such that

εW (ui−1, xi)εW (ui, xi) = −σ(xi), εW (ui, xi) + εW (ui, xi+1) = 0. (1)

Every walk has exactly two opposite directions. A walk W with a direction εW is called a
directed walk, denoted (W, εW ).
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Lemma 1. The sign of a closed walk equals (−1)k, where k is the number of times that the
walk is incoherent at vertices, including the initial and terminal vertex.

Proof. We perform a short calculation that applies to open as well as closed walks. Let
W = u0x1u1 . . . xnun be a walk, either open or closed. Then

σ(W ) =
n∏

i=1

σ(xi) =
n∏

i=1

(− ε(ui−1, xi)ε(ui, xi)
)

= −ε(u0, x1)ε(un, xn)
n−1∏
j=1

(− ε(uj, xj)ε(uj, xj+1)
)

=

{
(−1)kε(v0, e1)ε(vn, en) if W is open,

(−1)k if W is closed,

where k is the number of times that W is incoherent at its internal vertices if W is an open
walk. ¤

Let S ⊆ E be an edge subset. A reorientation by S is an orientation εS obtained from ε
by reversing the orientations of the edges in S and keeping the orientations of edges outside
S unchanged. Thus εS is given by

εS(v, e) =

{
−ε(v, e) if e ∈ S,

ε(v, e) if e /∈ S.

Sign-labeled covering graph. Let the end-vertices of each link edge of the graph G =
(V, E) be ordered arbitrarily and fixed. The sign-labeled covering graph of a signed graph
Σ = (V, E, σ) is an ordinary graph Σ̃ = (Ṽ , Ẽ) with the vertex and edge sets

Ṽ = V × {±}, Ẽ = E × {±},
defined as follows: If two vertices u, v ∈ V are adjacent by an edge x ∈ E, then the vertices
(u, α), (v, α σ(x)) in Ṽ are adjacent by an edge x̃ in Ẽ, and the vertices (u,−α), (v,−α σ(x))
are adjacent by another edge x̃∗ in Ẽ. We denote x̃ by (x, β) (with the index β randomly
selected) and x̃∗ by (x,−β). For simplicity, we write

uα = (u, α), xβ = (x, β), xβ = uαvα σ(x), x−β = u−αv−α σ(x).

There is no canonical way to choose the index β to label the edge between uα and vα σ(x)

with xβ, when the edge x is a link between its two end-vertices u, v. However, if we choose
one of two orders between the end-vertices u and v, say, u Â v, we can choose labels as
follows:

xα = uαvα σ(x), α = +,−.

If so, we have x+ = u+vσ(x) and x− = u−v−σ(x). Notice that the symbol xβ is just a sign-
labeled edge in Σ̃, nothing to do with the sign σ(x) of the edge x in Σ. All sign-labeled
covering graphs are isomorphic, when various orders are selected for the end-vertices of links
in the underlying signed graph.

There is a natural graph homomorphism π : Σ̃ → Σ, called the projection from Σ̃ to Σ,
which is a pair of functions πV : Ṽ → V and πE : Ẽ → E, defined by

πV (uα) = u, πE(xβ) = x.
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We usually write πV and πE simply as π. There is a canonical involutory but fixed-point
free graph automorphism ∗ of Σ̃, called the augmentation of Σ̃, defined by

(uα)∗ = u−α, (xβ)∗ = x−β.

When x is a negative loop at its unique end-vertex u, the edges x+, x− are two parallel
edges in Σ̃ with the end-vertices u+, u−. We may think of Ṽ as having a positive level
V + = {u+ | u ∈ V } and a negative level V − = {u− | u ∈ V }. We shall see later that it is
impossible to lift all edges of Σ to the same levels when Σ is unbalanced. A positive edge
is lifted to two edges staying inside each level, but a negative edge is lifted to two edges
crossing between the two levels.

The orientation ε on Σ can be lifted to an orientation ε̃ on Σ̃ as follows, called the lift of ε.
Let x ∈ E be an edge incident with a vertex u ∈ V , and let x̃ be a lift of x and be incident
with a vertex uα ∈ Ṽ . Then we define

ε̃(uα, x̃) = α ε(u, x). (2)

Since u−α is an end-vertex of the lifted edge x̃∗, then by definition we have

ε̃(u−α, x̃∗) = −α ε(u, x).

Alternatively, if we have chosen an order between u and v for each link x = uv, say, u Â v,
then we define

ε̃(uα, xα) = α ε(u, x), ε̃(vα σ(x), xα) = α σ(x) ε(v, x). (3)

It is easy to see that the two arrows on each lifted edge x̃ are the same, regardless of the sign
of the edge x in Σ. In fact, for each edge x with end-vertices u, v (possibly u = v), we have

ε̃(uα, x̃) ε̃(vα σ(x), x̃) = α ε(u, x) α σ(x) ε(v, x) = −1.

Analogously, we have

ε̃(u−α, x̃∗) ε̃(v−α σ(x), x̃∗) = (−α ε(u, x))(−α σ(x) ε(v, x)) = −1.

This means that the two arrows on each of the two lifted edges x̃, x̃∗ have the same directions;
see Figure 1 for a link edge and Figure 2 for a loop edge. So (Σ̃, ε̃) is an ordinary directed
unsigned graph. Note the covering graph Σ̃ is independent of the chosen order on the two
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Figure 1. Lifting of a link edge and its orientation

end-vertices of each link edge in the sense that the covering graphs with respect to different
orders are all graph isomorphic.

Two oriented edges x, y ∈ E incident with a common vertex v, with the orientations ε(v, x)
and ε(v, y), are said to be coherent at v if

ε(v, x) ε(v, y) = −1, (4)
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Figure 2. Lifting of a loop and its orientation

which is equivalent to ε(v, x) + ε(v, y) = 0. We shall see that the lifting of orientations
preserves coherence. If x and y are oriented edges with a common vertex v, with the orien-
tations ε(v, x) and ε(v, y), then the concatenated lift of xvy to x̃vαỹ, with the orientations
ε̃(vα, x̃) and ε̃(vα, ỹ), is coherent at v. In fact,

ε̃(vα, x̃) ε̃(vα, ỹ) = α ε(v, x) α ε(v, y) = −1. (5)

Let εi be orientations on signed subgraphs Σi, i = 1, 2. The coupling of ε1 and ε2 is a
function [ε1, ε2] : E → {−1, 0, 1}, defined (for each edge x with its end-vertex u) by

[ε1, ε2](x) =





1 if x ∈ Σ1 ∩ Σ2, ε1(u, x) = ε2(u, x),
−1 if x ∈ Σ1 ∩ Σ2, ε1(u, x) 6= ε2(u, x),

0 otherwise.
(6)

One may extend εi to Σ by requiring ε(v, y) = 0 whenever the edge y in not incident with
the vertex v in Σi. We always assume this extension automatically. Then alternatively,

[ε1, ε2](x) = ε1(u, x) ε2(u, x), where u ∈ End(x).

The lifted graphs Σ̃i are subgraphs of Σ̃ and (Σ̃i, ε̃i) are oriented subgraphs of the oriented
graph (Σ̃, ε̃). Moreover, the lifting of orientations preserves the coupling, that is,

[ε̃1, ε̃2](x
β) = [ε1, ε2](x) (7)

for each lift xβ of an edge x. Indeed,

[ε̃1, ε̃2](x
β) = ε̃1(u

α, xβ) ε̃2(u
α, xβ) = α ε1(u, x) α ε2(u, x) = [ε1, ε2](x).

Let W = u0x1u1x2 . . . xnun be a walk in Σ of length n with a direction εW . We may lift
W to a walk W̃ (called a lift of W ) in Σ̃ as follows: Select an initial vertex uα0 ; define

W̃ = uα0
0 x̃1u

α1
1 x̃2 . . . u

αn−1

n−1 x̃nu
αn
n , αi = αi−1σ(xi), x̃i = u

αi−1

i−1 uαi
i . (8)

A lift W̃ is call a resolution of W if it is a cycle or an open path. There are exactly two lifts
of W in the form (8), since there are exactly two choices for α0. Moreover, it follows from
(5) that the lifted orientation ε̃W from εW by (2) to the edges in W̃ forms a direction of W̃ .
Thus (W, εW ) is lifted exactly to two directed walks (W̃ , ε̃W ). We call W the projected walk
of W̃ and write W = π(W̃ ).
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Lemma 2. Let W be a closed walk in Σ with initial and terminal vertices, and let εW be a
direction of W with respect to the initial vertex. Let (W̃ , ε̃W ) be a lift of the directed walk
(W, εW ). If W is positive, then (W̃ , ε̃W ) is a directed closed walk. If W is negative, then
(W̃ , ε̃W ) is a directed open walk.

Proof. Let W = u0x1u1x2 . . . un−1xnun and be lifted to a walk W̃ = uα0
0 x̃1u

α1
1 . . . x̃nu

αn
n .

Since positive edges are lifted to the edges staying in the same level and negative edges to
the edges crossing the two levels, we see that σ(xi) = αi−1αi. Then

σ(W ) =
n∏

i=1

σ(xi) =
n∏

i=1

αi−1αi = α0αn.

Clearly, σ(W ) = +1 if and only if αn = α0, and subsequently if and only if W̃ is closed. ¤

2. Flows

Flows on signed graphs. The incidence matrix of an oriented signed graph (Σ, ε) is the
matrix M = M(Σ, ε) = [m(u, x)] indexed by the set V × E, where m is a function
m : V × E → Z defined by

m(u, x) =





ε(u, x) if x is a link,
2ε(u, x) if x is a negative loop,
0 otherwise.

Alternatively, m(u, x) =
∑

v∈End(x), v=u ε(v, x), where End(x) is a multiset of two identical

vertices when x is a loop. An integral flow on an oriented signed graph (Σ, ε) is a function
f : E → Z which is conservative at every vertex u, meaning that ∂f = 0, where ∂ : ZE → ZV

is called the boundary operator of (Σ, ε), defined by

∂f(u) =
∑
x∈E

m(u, x)f(x) =
∑
x∈E

∑

v∈End(x), v=u

ε(u, x)f(x). (9)

The value of the function ∂f at u is also called the excess of f at u in network flows. The set
of all integral flows on (Σ, ε) forms a Z-module, called the flow lattice by Chen and Wang,
who developed its basic theory in [5]. One can define flows with values in an arbitrary
abelian group, such as the additive reals and finitely generated abelian groups. Many of the
following remarks are applicable in general, so we omit the word “integral.”

The theory of flows of signed graphs depends essentially on the graph and sign function
but not on the orientation, since for two orientations ε, ρ there is an isomorphism from the
flow lattice of (Σ, ε) to the flow lattice of (Σ, ρ) by f 7→ [ε, ρ]f .

The support of a function f : E → Z is the set of edges x such that f(x) 6= 0, denoted
supp f . We denote by Σ(f) the signed subgraph of Σ whose edge set is supp f and vertex set
consists of vertices incident with some edges in supp f . The flow that is zero on all edges is
called the zero flow. Flows other than the zero flow are referred to nontrivial flows. A circuit
flow is a flow whose support is a signed-graph circuit, having values ±1 on the edges of the
cycles and value ±2 on the edges of the circuit path (for Type III circuits). See Figure 3 for
signed-graph circuit flows of Type II and Type III.

The theory of flows on ordinary graphs is simply the case that all edges are positive, where
a circuit flow has a cycle as its support and has values ±1 on the edges of the cycle (see [2],
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Figure 3. Signed-graph circuit flows of Types II and III

p.52). Signed-graph circuit flows are defined analogously in [5]. Nowhere-zero integral flows
on signed graphs are studied in [1, 4, 11].

We say that an integral flow f1 conforms to the sign pattern of f if supp f1 ⊆ supp f , and
f1(x) has the same sign as f(x) for all edges x in supp f1.

An integral flow f on (Σ, ε) lifts to a flow on the oriented sign-labeled covering graph
(Σ̃, ε̃), possibly in more than one way. The best way to see this is through the correspondence
between flows and walks, which exists if Σ(f) is connected.

A directed closed positive walk (W, εW ) on (Σ, ε) corresponds to a unique integral flow
f(W, εW ), defined by

f(W, εW )(x) =
∑

y∈W, y=x

[ε, εW ](y), (10)

where W is viewed as a multiset {x1, x2, . . . , xn} of edges if W = u0x1u1 . . . xnun; see [5].
Clearly, f(W,εW )(x) is the number of times that the walk W traverses the edge x along the
direction ε minus the number of times that W traverses x along the direction opposite to ε.
Whenever the direction εW is the same as ε on W , we simply write f(W, εW ) as fW , and

fW (x) = #{y ∈ W | y = x} (as a multiset). (11)

To see that f(W, εW ) is a flow, consider the contribution to f(W, εW ) of a pair of consecutive
edges, xiuixi+1, at the intervening vertex ui. Since (W, εW ) is coherent at ui, the contribution
of these edges to ∂f(W, εW )(ui) is 0. This same argument applies to the initial vertex if we
take subscripts modulo the length of W . We can apply the same definition f(W, εW ) to any
directed walk (W, εW ) (not necessarily closed), however the result is no longer a flow. In
fact, we have the following lemma.

Lemma 3. Let (W, εW ) be a directed walk with W = u0x1u1x2 . . . un−1xnun. Then the
function f(W, εW ) is conservative everywhere except at u0 and un, that is,

∂f(W, εW )(u) = 0, u 6= u0, un.

Moreover, if W is closed, then

∂f(W, εW )(u0) =

{
0 if W is positive,
2εW (u0, x1) if W is negative.

If W is open, then ∂f(W, εW )(u0) = εW (u0, x1) and

∂f(W, εW )(un) = εW (un, xn) = −σ(W ) εW (u0, x1).
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Proof. Fix a vertex u. Let u be appeared in the vertex-edge sequence of W as the subsequence
u`1 , u`2 , . . . , u`k

. If u 6= u0, un, then εW (u`i
, x`i

) = −εW (u`i
, x`i+1). We compute

∂f(W, εW )(u) =
∑
x∈E

m(u, x)
∑

y∈W, y=x

[ε, εW ](y)

=
∑
y∈W

m(u, y)[ε, εW ](y)

=
∑
y∈W

∑

v∈End(y), v=u

ε(v, y)[ε, εW ](y)

=
∑
y∈W

∑

v∈End(y), v=u

εW (v, y).

The last equality follows from definition of the coupling. For each vertex u`i
with 1 ≤

i ≤ k, we have the sub-walk segment x`i
u`i

x`i+1, which contributes exactly the two terms
εW (u`i

, x`i
), εW (u`i

, x`i+1) in the above last sum. Thus

∂f(W, εW )(u) =
k∑

i=1

[ε(W, εW )(u`i
, x`i

) + εW (u`i
, x`i+1)] = 0

regardless of whether W is closed or open.
Assume W is closed, that is, u0 = un. If u = u0, then `1 = u0 and `k = n. So u`1 and u`k

are the initial and terminal vertices of W , x0 = xn and xn+1 = x1. We have

∂f(W, εW )(u0) = εW (u0, x1) + ε(un, xn).

In particular, if W is positive, we have ∂f(W, εW )(u0) = 0; if W is negative, we have

∂f(W, εW )(u0) = 2ε(u0, x1) = 2εW (un, xn).

Assume W is open, that is, u0 6= un. If u = u0 or u = un, then ∂f(W, εW )(u0) = εW (u0, x1)
and

∂f(W, εW )(un) = εW (un, xn) = −σ(W )εW (u0, x1).

¤

Conversely, directed closed walks (which are usually not unique) can be constructed from
integral flows. Chen and Wang [6] developed a flow reduction algorithm to obtain an equiv-
alent classification of indecomposable flows. The method employed in [6] is an algorithmic
approach. The present paper is a structural approach by resolution of singularities.

Proposition 4. Let f be a nonnegative, nontrivial, integral flow on (Σ, ε) such that Σ(f) is
connected. Then there exists a directed, closed, positive walk (W, ε) such that fW = f .

Proof. We apply induction on the total weight ‖f‖ :=
∑

x∈E f(x). Choose a vertex u0 and
an edge x1 incident with u0 in Σ(f). Let u1 be the other end-vertex of x1 (u1 = u0 if x1 is a
loop). This gives a walk W1 = u0x1u1 of length 1. Clearly, f ≥ fW1 ≥ 0.

Now assume that we have selected a partial walk Wk = u0x1u1 . . . xkuk and f ≥ fWk
≥ 0.

If Wk is not a closed positive walk, that is, W is open, or closed but is negative, then
by Lemma 3, the function fWk

is not a flow, for it is not conservative at uk. Since f is
conservative at uk, the function f − fWk

cannot be conservative at uk. Then there exists
9



an edge xk+1 incident with uk in Σ(f − fWk
) such that ε(uk, xk+1) = −ε(uk, xk). Let uk+1

denote the other end-vertex of xk+1 and extend Wk to

Wk+1 = Wkxk+1uk+1.

Clearly, we have f ≥ fWk+1
≥ 0 by the construction. Continue this procedure when Wk+1 is

not a closed positive walk. We finally obtain a directed closed positive walk (Wn, ε). Thus
f ′ (= f − fWn) is a nonnegative integral flow and clearly ‖f ′‖ < ‖f‖.

Let Σ(f ′) be decomposed into connected components Σi, and set f ′i = f ′|Σi
. Then f ′ =∑

i f
′
i and supp f ′i = E(Σi). It is easy to see that f ′i are nonnegative nontrivial integral

flows of (Σ, ε) and ‖f ′i‖ < ‖f‖. By induction, there exist directed closed positive walks
(W ′

i , ε) such that f ′i = fW ′
i
. It is clear that the union of all (W ′

i , ε) and (Wn, ε) is connected.
One can construct a single directed closed positive walk (W, ε) by rearranging the initial
and terminal vertices of all W ′

i and Wn, and connecting them properly at some of their
intersections. Clearly, we have fW = f by the construction. ¤

Let f be an integral flow of (Σ, ε). Associated with f is an orientation εf on Σ defined by
(for each edge x at its end-vertex u)

εf (u, x) =

{
ε(u, x) if f(x) ≥ 0,

−ε(u, x) if f(x) < 0.
(12)

Corollary 5. Let f be a nontrivial integral flow on (Σ, ε). If Σ(f) is connected, then there
exists a closed positive walk W such that (W, εf ) is a directed closed walk and f(W, εf ) = f .

Proof. The absolute function |f | = [ε, εf ]f is a nonnegative, nontrivial, integral flow of
(Σ, εf ). According to Proposition 4, there exists a directed closed positive walk (W, εf ) such
that fW = |f | within the oriented signed graph (Σ, εf ), where

fW (x) =
∑

y∈W, y=x

[εf , εf ](y) =
∑

y∈W, y=x

1, x ∈ E.

For the same directed closed positive walk (W, εf ) within (Σ, ε), we have

f(W, εf )(x) =
∑

y∈W, y=x

[ε, εf ](y) = [ε, εf ](x)
∑

y∈W, y=x

1

= [ε, εf ](x)fW (x), x ∈ E.

Since f = [ε, εf ] |f | and |f | = fW , it follows that f(W, εf ) = f . ¤

Lifted flows. Consider a function f̃ : Ẽ → Z defined on the edge set of the sign-labeled
covering graph Σ̃. The projection of f̃ is the function π(f̃) : E → Z defined by

π(f̃)(x) = f̃(x+) + f̃(x−). (13)

Let M̃ = M(Σ̃, ε̃) denote the incidence matrix of (Σ̃, ε̃) of size Ṽ×Ẽ. Write M̃ = [m̃(uα, x̃)].
Then m̃(uα, x̃) = ε̃(uα, x̃) if x̃ is a link edge with end-vertex uα, and m̃(uα, x̃) = 0 otherwise.
Since only positive loops of Σ are lifted to loops in Σ̃, we have

m̃(uα, x̃) =

{
0 if x is a positive loop,
α ε(u, x) otherwise.

(14)
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The boundary operator ∂ : ZẼ → ZṼ is defined by

∂f̃(uα) =
∑

y∈Ẽ

m̃(uα, y)f̃(y).

Lemma 6. Let f̃ be a function defined on Ẽ. Then ∂π(f̃) is given by

∂π(f̃)(u) = ∂f̃(u+)− ∂f̃(u−), u ∈ V. (15)

If f̃ is a flow on (Σ̃, ε̃), so is π(f̃) on (Σ, ε).

Proof. Fix a vertex u in Σ. Let Eu denote the set of all edges incident with u. Then Eu is
partitioned into the disjoint sets Lk(u), Lp(u) of links and loops at u respectively, and Lp(u)
is further partitioned into the disjoint subsets

Lp+(u) = {positive loops at u}, Lp−(u) = {negative loops at u}.
Since m(u, x) = 0 if x is a positive loop at u, we compute

∂π(f̃)(u) =
∑
x∈Eu

m(u, x)
[
f̃(x+) + f̃(x−)

]

=
∑

x∈Lk(u)

ε(u, x)[f̃(x+) + f̃(x−)] (16)

+
∑

x∈Lp−(u)

2ε(u, x)[f̃(x+) + f̃(x−)]. (17)

Fix a vertex uα of Σ̃. The link edges incident with uα are the edges xα with x ∈ Lk(u) and
the edges xα, x−α with x ∈ Lp−(u). We compute

∂f̃(uα) =
∑

x∈Lk(u)∪Lp−(u)

m̃(uα, xα)f̃(xα) +
∑

x∈Lp−(u)

m̃(uα, x−α)f̃(x−α)

= α
∑

x∈Lk(u)∪Lp−(u)

ε(u, x)f̃(xα) + α
∑

x∈Lp−(u)

ε(u, x)f̃(x−α).

The second equality follows from (14). In particular, we have

∂f̃(u+) =
∑

x∈Lk(u)∪Lp−(u)

ε(u, x)f̃(x+) +
∑

x∈Lp−(u)

ε(u, x)f̃(x−);

∂f̃(u−) = −
∑

x∈Lk(u)∪Lp−(u)

ε(u, x)f̃(x−)−
∑

x∈Lp−(u)

ε(u, x)f̃(x+).

Adding ∂f̃(u+) and −∂f̃(u−) together and comparing the result with ∂π(f̃)(u) in (16), we
obtain (15).

Whenever f̃ is a flow of (Σ̃, ε̃), then ∂f̃(u+) = ∂f̃(u−) = 0. Thus ∂π(f̃)(u) = 0. This

means that ∂π(f̃) is a flow of (Σ, ε). ¤

A lift of an integral flow f of (Σ, ε) to Σ̃ is an integral flow f̃ of (Σ̃, ε̃) such that π(f̃) = f .

Proposition 7. (a) Let (W̃ , ε̃W ) be a lift of a directed closed positive walk (W, εW ). Then

π[f(W̃ , ε̃W )] = f(W, εW ). (18)
11



(b) Let f be an integral flow on (Σ, ε), and let (W, εf ) be a directed closed positive walk

such that f = f(W, εf ). Let (W, εf ) be lifted to a directed closed walk (W̃ , ε̃f ) in Σ̃. Then

f̃ := f(W̃ , ε̃f ) is a flow on (Σ̃, ε̃) lifted from f . Moreover, if f is nonnegative, so is f̃ .

Proof. (a) It suffices to show that f(W, εW )(x) = f(W̃ , ε̃W )(x
+) + f(W̃ , ε̃W )(x

−). Since the lifting

of orientations preserves the coupling, then by (7) we have

π[f(W̃ , ε̃W )](x) = f(W̃ , ε̃W )(x
+) + f(W̃ , ε̃W )(x

−)

=
∑

ỹ∈W̃ , ỹ=x+ or x−

[ε̃, ε̃W ](ỹ)

=
∑

y∈W, y=x

[ε, εW ](y) = f(W, εW )(x).

(b) Since f = f(W, εf ), it is trivial by (18) that f̃ is a lifted flow of f . If f is nonnegative,

then εf = ε; subsequently, ε̃f = ε̃. Hence f̃ = f(W̃ , ε̃f ) is nonnegative by definition (10). ¤

An integral flow f on an oriented signed graph (Σ, ε) is said to be conformally decomposable
if it is nontrivial and can be represented as a sum of two other integral flows, f = f1 + f2,
each of which is nontrivial and conforms to the sign pattern of f , that is, f1(x)f2(x) ≥ 0
for all edges x; this means that both f1(x), f2(x) are positive or both are negative if they
are nonzero. An integral flow of (Σ, ε) is said to be conformally indecomposable if it is not
conformally decomposable. A nonnegative nontrivial integral flow f on (Σ, ε) is said to
be minimal provided that if g is a nonnegative nontrivial integral flow on (Σ, ε) such that
g(x) ≤ f(x) for all edges x, then g = f .

If an integral flow f is nonnegative, then minimality is equivalent to conformal indecom-
posability. In fact, if f is decomposed into f = f1 + f2, then f1, f2 must be nonnegative
nontrivial integral flows and f1 ≤ f , f1 6= f ; this means that f is not minimal. Conversely,
if f is not minimal, say, there is a nonnegative nontrivial integral flow g on (Σ, ε) such that
g ≤ f but g 6= f , then h = f − g is nontrivial and nonnegative, and f is decomposed into
f = g + h.

In the following we shall see that the conformal indecomposability of a nontrivial integral
flow f on (Σ, ε) is equivalent to the minimality of the absolute value flow |f | on (Σ, εf ),
where εf is the orientation given by (12). It is well known and easy to see that conformally
indecomposable flows on an ordinary graph are just graph circuit flows.

Lemma 8. A nontrivial integral flow f of (Σ, ε) is conformally indecomposable if and only
if the absolute value function |f | is a minimal flow of (Σ, εf ).

Proof. Applying the boundary operator (9), it is clear that f is a flow on (Σ, ε) if and only if
|f | = [ε, εf ] f is a flow on (Σ, εf ). Since |f | is nonnegative, its minimality is equivalent to its
conformal indecomposability. We show necessity first. Suppose |f | is not minimal, that is,
|f | = g1 +g2, where gi are nonnegative nontrivial integral flows of (Σ, εf ). Then fi = [ε, εf ] gi

are nontrivial integral flows of (Σ, ε). Thus

f = [ε, εf ] |f | = [ε, εf ] g1 + [ε, εf ] g2 = f1 + f2,

and f1 f2 = g1 g2 ≥ 0, meaning that f is conformally decomposable. This is a contradiction.
For sufficiency, suppose f is conformally decomposable, that is, f = f1 + f2, where fi

are nontrivial integral flows of (Σ, ε) such that f1 f2 ≥ 0. Then gi = [ε, εf ] fi are nontrivial
12



integral flows of (Σ, εf ). For each edge x, if fi(x) > 0, we must have f(x) > 0 and [ε, εf ](x) =
1; if fi(x) < 0, we must have f(x) < 0 and [ε, εf ](x) = −1; then gi(x) ≥ 0. Hence

|f | = [ε, εf ] f = [ε, εf ] f1 + [ε, εf ] f2 = g1 + g2,

meaning that |f | is conformally decomposable. This is a contradiction. ¤

3. Indecomposable flows

A signed graph Ω with nonempty edge set is said to be Eulerian if there exists a directed
closed walk (W, εW ) that uses every edge of Ω at least once but at most twice, and the
direction εW has the same orientation on each pair of repeated edges. An Eulerian signed
graph is further said to be prime if its directed closed walk does not properly contain directed
closed subwalks. An Eulerian signed graph is said to be mimimal if it does not properly
contain Eulerian signed subgraphs. It is easy to see that minimal Eulerian signed graphs
must be prime Eulerian signed graphs.

Definition 9. A signed graph T with nonempty edge set is called a cycle-tree if it satisfies
the following conditions:

(a) T is connected.
(b) Each block of T is either a cycle (called block cycle) or an edge.
(c) Each cut-vertex is incident with exactly two blocks.
(d) Each block incident with exactly one cut-vertex is a cycle (called an end-block cycle).

A cycle-tree is said to be Eulerian if it further satisfies

(e) Parity Condition: The sign of a block cycle equals (−1)p, where p is the number of
cut-vertices of T on the cycle.

We shall see that prime Eulerian signed graphs are Eulerian cycle-trees, and minimal
Eulerian signed graphs are signed-graph circuits, i.e., positive cycles or handcuffs.

A cycle-tree is indeed a tree-like signed graph whose “vertices” are the block cycles and
“edges” are the paths (of possible zero length, called block paths) between pairs of block
cycles. The end-vertices of block paths are cut-vertices. If a block path has length zero, it
is a common cut-vertex of two block cycles. We may also think of an Eulerian cycle-tree as
a “tree” whose “vertices” are some vertex-disjoint maximal Eulerian subgraphs and “edges”
are the paths (of positive length) between the Eulerian subgraphs, where each such maximal
Eulerian graph is also a tree-like whose “vertices” are edge-disjoint cycles and “edges” are
the intersection vertices between pairs of cycles. Figure 4 exhibits an Eulerian cycle-tree
with a direction.

2
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+
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_

_
_

_ +

+

_

2

Figure 4. An Eulerian cycle-tree with a direction

Let T be an Eulerian cycle-tree. A direction of T is an orientation εT on T such that
(T, εT ) has neither sources nor sinks, but for each block cycle C the signed subgraph (C, εT )
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has either a source or a sink at each cut-vertex of T on C. It is easy to see that there exist
exactly two (opposite) directions on T . For unsigned graphs, since all edges are positive,
Eulerian cycle-trees are just cycles, and directed Eulerian cycle-trees are directed cycles.

When T is contained in a signed graph Σ, the indicator function of T is the function
IT : E → Z defined by

IT (x) =





1 if x belongs to a block cycle,
2 if x belongs to a block path,
0 otherwise.

(19)

The function [ε, εT ] IT is called the characteristic vector of (T, εT ) within (Σ, ε).
A closed walk on T is called an Eulerian tour if it uses every edge of T and has minimum

length. A subgraph of T is called an Eulerian cycle-subtree if it is also an Eulerian cycle-tree
and its block cycles and block paths are block cycles and block paths of T .

Proposition 10 (Existence and Uniqueness of Direction on Eulerian Cycle-Tree). Let T be
an Eulerian cycle-tree. Then

(a) There exists a closed walk W on T such that (i) W uses each edge of block cycles once
and each edge of block paths twice, (ii) whenever W meets a cut-vertex, it crosses from one
block to another block.

Moreover, each such closed walk is an Eulerian tour on T , having the length

`(T ) :=
∑

i

`(Ci) + 2
∑

j

`(Pj), (20)

where Ci are block cycles and Pj are block paths of T .
(b) Each Eulerian tour W on T satisfies the conditions (i), (ii), and `(W ) = `(T ).
(c) There exists a unique direction εT of T (up to opposite sign) such that (W, εT ) is

coherent for each Eulerian tour W on T and

f(W, εT ) = [ε, εT ] IT . (21)

Moreover, if u is a cut-vertex and W = W1W2, where Wi are closed sub-walks having initial
and terminal vertices at u, then both Wi are negative and (Wi, εT ) are incoherent at u and
coherent elsewhere.

Proof. (a) & (b): Let T̃ be the sign-labeled covering graph of T . We claim that there exists
a directed cycle (W̃ , εW̃ ) such that (i′) W̃ covers each edge of block cycles once and each

edge of block paths twice, (ii′) orientations on each edge of T induced from (W̃ , εW̃ ) by the
projection are identical, and (iii′) the induced orientation εT from εW̃ is a direction of T .

We proceed by induction on the number of block cycles. If there is only one block cycle,
the cycle must be positive as there is no cut vertices. Choose a direction of the cycle. The
directed cycle lifts to a directed cycle in T̃ by Lemma 2. Now we assume that T contains at
least two block cycles.

Choose an end-block cycle C0 of T with the unique cut-vertex u0. There exists a path P
connecting C0 to another block cycle C1, having the initial vertex u0 on C0 and the terminal
vertex v0 on C1. Let C0, P be written as

C0 = u0x1u1x2 . . . um−1xmum, P = v0y1v1y2 . . . vn−1ynvn,

where u0 = um = vn, and be lifted to T̃ as the paths

P̃0 = uα0
0 x̃1u

α1
1 x̃2 . . . u

αm−1

m−1 x̃muαm
m , P̃ = vβ0

0 ỹ1v
β1

1 ỹ2 . . . v
βn−1

n−1 ỹnv
βn
n .
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Note that αm = −α0, since the cycle C0 is negative.
Let us remove C0, P from T , change the sign of an edge z in C1 at v0, and rename z as

z1. We then obtain an Eulerian cycle-tree T1, which has one fewer block cycles than T . By
induction there exists a directed cycle (W̃1, ε̃W1) satisfying the conditions (i′)–(iii′). Let z̃1

be an edge of W̃1 that covers z1, having an end-vertex vγ
0 covering v0. Let us write W̃1 as a

closed path from vγ
0 to vγ

0 , having arranged z̃1 as the last edge. Let s = ε̃W1(v
γ
0 , z̃1), and let

(P̃1, ε̃P1) be a directed path in T̃ from vγ
0 to v−γ

0 , obtained from (W̃1, ε̃W1) by replacing the
edge z̃1 with an edge z̃ of T̃ at v−γ

0 , where z̃ covers z, having the orientation ε̃P1(v
−γ
0 , z̃) = s.

In the case that P has length zero, we have u0 = v0. Let α0 = −γ. Then P̃0 is an
open path from u−γ

0 to uγ
0 . Choose a direction ε̃P0 of P̃0 such that ε̃P0(u

α0
0 , x̃1) = −s. Then

(W̃ , εW̃ ) is a directed cycle in T̃ , satisfying the conditions (i′)–(iii′), where W̃ = P̃0P̃1 and
εW̃ = ε̃P0 ∨ ε̃P1 .

In the case that P has positive length, let β0 = −γ. Then βn is determined by P̃ .
Let α0 = βn. Then P̃ P̃0 is an open path from v−γ

0 to u−α0
0 . Choose a direction ε̃P of P̃

such that ε̃P (vβ0

0 , ỹ1) = −s, then ε̃P (vβn
n , ỹn) = s. Choose a direction ε̃P0 of P̃0 such that

ε̃P0(u
α0
0 , x̃1) = −s, then ε̃P0(u

αm
m , x̃m) = s. Consider the path

P̃ ∗ = v−β0

0 ỹ∗1v
−β1

1 ỹ∗2 . . . v
−βn−1

n−1 ỹ∗nv
−βn
n ;

its reverse P̃ ∗−1
is a path from uαm

0 to vγ
0 . There is an induced direction ε̃∗P on P̃ ∗ by the

augmentation ∗, that is, ε̃∗P (v−β0

0 , ỹ∗1) = s, ε̃∗P (v−βn
n , ỹ∗n) = −s. Note that the direction ε̃P of P̃

induces a direction εP on P by the projection, that is, εP (v0, y1) = −β0s, εP (v0, yn) = βns.
The direction ε̃∗P of P̃ ∗ also induces the direction εP by the projection. Thus (W̃ , εW̃ )

is a directed cycle in T̃ , satisfying the conditions (i′)–(iii′), where W̃ = P̃ P̃0P̃ ∗−1
P̃1 and

εW̃ = ε̃P ∨ ε̃P0 ∨ ε̃∗P ∨ ε̃P1 .

We define the closed walk W = π(W̃ ) and its direction εW = π(εW̃ ). Then W satisfies
the conditions (i), (ii), and is an Eulerian tour on T .

Conversely, each Eulerian tour W on T must pass each edge of block paths at least twice,
for each edge of block paths is a cut-edge. So W has length at least `(T ). Since W has
minimum length, it follows that `(W ) = `(T ). The minimum property of `(W ) forces that
W satisfies the conditions (i) and (ii).

(c) Let εT be the direction of T by taking the projection of the direction εW̃ . Now for an
arbitrary Eulerian tour W on T , the direction property of εT forces (W, ε) to be a directed
closed walk. The uniqueness of εT up to opposite sign follows from the “tree” structure of T .
The properties (i) and (ii) imply that IT is a flow of (T, εT ). Thus f(W, εT ) = [ε, εT ] IT . ¤

It is easy to see that the number of Eulerian tours (up to the reversing of orders of vertex-
edge sequences) on an Eulerian cycle-tree T is 2q, where q is the number of cut-vertices of
T .

Lemma 11 (Minimality of Eulerian Cycle-Tree). Let T be an Eulerian cycle-tree. If a signed
subgraph T ′ of T is also an Eulerian cycle-tree, then T ′ = T .

Proof. The block cycles of T ′ are certainly block cycles of T . Suppose T ′ is properly contained
in T . Then there exist a block cycle C of T ′ and a vertex u of C such that u is not a cut-
vertex in T ′ but a cut-vertex in T . Let εT be a direction of T and εT ′ a direction of T ′ such
that they agree on C. Then Proposition 10(c) implies that εT |T ′ = εT ′ . Note that (C, εT )
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must be coherent at u when C is considered as a block cycle in T ′, and must have either a
sink or a source at u when C is considered as a block cycle in T . This is a contradiction. ¤
Lemma 12 (Resolution of Indecomposable Flows). Let f be a conformally indecomposable

flow on (Σ, ε). Then f can be lifted to a conformally indecomposable flow f̃ on (Σ̃, ε̃). So

Σ(f̃) is a cycle.

Proof. It is clear that the conformal indecomposability of f implies that Σ(f) is connected.
Let f = f(W, εf ), where (W, εf ) is a directed closed positive walk of Σ. Lift (W, εf ) to a directed

closed walk (W̃ , ε̃f ) in Σ̃. Then f is lifted to a flow f(W̃ , ε̃f ) of (Σ̃, ε̃) by Proposition 7(a),

denoted f̃ = f(W̃ , ε̃f ). Suppose f̃ is decomposed into f̃ = f̃1 + f̃2, where f̃i are nontrivial

flows and f̃1 f̃2 ≥ 0. Notice that

f = [ε, εf ] |f |, f̃ = [ε̃, ε̃f ] |f̃ |, f̃i = [ε̃, ε̃f ] |f̃i|.
Denote fi = π(f̃i), which are nontrivial flows of (Σ, ε). Then for each edge x of Σ,

fi(x) = [ε̃, ε̃f ](x
+) |f̃i|(x+) + [ε̃, ε̃f ](x

−) |f̃i|(x−)

= [ε, εf ](x)
(|f̃i(x

+)|+ |f̃i(x
−)|)

= [ε, εf ](x) π(|f̃i|)(x).

Taking absolute values of both sides, we obtain |fi| = π(|f̃i|); subsequently, fi = [ε, εf ] |fi|.
Thus f = f1 + f2 and f1 f2 = |f1| |f2| ≥ 0, meaning that f is conformally decomposable.
This is a contradiction. ¤
Theorem 13 (Classification of Indecomposable Flows). Let f be a flow of (Σ, ε) and Ω =
Σ(f). Then f is conformally indecomposable if and only if Ω is an Eulerian cycle-tree with
a direction εΩ = εf |Ω and

f = [ε, εΩ] IΩ. (22)

Proof. We show necessity first. Recall that εf is an orientation obtained from ε by reversing
the orientations on the edges x such that f(x) < 0. Then |f | = [ε, εf ] f is a conformally
indecomposable flow on (Σ, εf ); so is a minimal flow because of nonnegativity. Let εf be

lifted to an orientation ε̃f on Σ̃ and set ε̃Ω = ε̃f |Ω̃. Let W = u0x1u1x2 . . . xnun be a closed
positive walk such that (W, εΩ) is directed. Then |f | = fW within (Σ, εf ) by Corollary 5

and Lemma 8. Let W be lifted to a walk W̃ = uα0
0 x̃1u

α1
1 x̃2 . . . x̃nu

αn
n in Σ̃. Then (W̃ , ε̃Ω) is

a directed closed walk in Σ̃ by Lemma 2, and fW̃ is a conformally indecomposable flow of

(Σ̃, ε̃f ) by Lemma 12. Since Σ̃ is an unsigned graph, the closed walk W̃ must be a cycle.

Since Σ̃ is a double covering of Σ and π(W̃ ) = W , it follows that W has only possible double
vertices and double edges. If W has no double vertices, that is, W has no self-intersections,
then (W, εΩ) is a directed cycle. Clearly, its underlying signed graph is a balanced cycle, of
course is an Eulerian cycle-tree contained in Σ, and f = [ε, εΩ] IΩ.

Assume that W has some self-intersections. Let u be a double vertex of W . Rewrite
W = W1W2, where Wi are closed walks with the initial and terminal vertices at u; more
specifically,

W1 = u0x1u1 . . . xmum, W2 = umxm+1um+1 . . . xnun

with u0 = um = un = u. We claim that Wi are negative, (Wi, εΩ) are incoherent at u and
coherent elsewhere, and u is a cut-vertex.
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Notice that (Wi, εΩ) are coherent everywhere except at u. Suppose (W1, εΩ) is coherent
at u. Then (W2, εΩ) is also coherent at u. Thus (Wi, εΩ) are directed closed walks. We then
have fW = fW1 + fW2 within (Σ, εf ), meaning that |f | is conformally decomposable; this is
a contradiction. Hence (Wi, εΩ) must be incoherent at u. Lemma 3 implies that the closed
walks Wi are negative. Let’s write W̃ = W̃1W̃2, where

W̃1 = uα0
0 x̃1u

α1
1 . . . x̃muαm

m , W̃2 = uαm
m x̃m+1u

αm+1

m+1 . . . x̃nu
αn
n

are open simple paths. Then α0 = αn = −αm by Lemma 2.
Suppose u is not a cut-vertex, that is, the walks W1 and W2 meet at a vertex v other

than u. Write the vertex v in W1,W2 as uk, uh respectively, that is, v = uk = uh, where
1 ≤ k ≤ m − 1 and m + 1 ≤ h ≤ n − 1. Since W is a cycle, then uαk

k 6= uαh
h ; subsequently,

αk = −αh. Consider the closed walk

W̃ ′ = uα0
0 x̃1u

α1
1 . . . u

αk−1

k−1 x̃ku
αk
k (u−αh

h )x̃∗hu
−αh−1

h−1 . . . u
−αm+1

m+1 x̃∗m+1u
−αm
m (uα0

0 ).

Let s = ε̃Ω(uα0
0 , x̃1). Then ε̃Ω(uαk

0 , x̃k) = −s, for the open walk (W̃1, ε̃Ω) is directed. Anal-
ogously, s = ε̃Ω(uαm

m , x̃m+1) = αmεΩ(um, xm+1), the second equality is by definition (2) of
lifting orientation. Then ε̃Ω(u−αm

m , x̃∗m+1) = −αmεΩ(um, xm+1) = −s, that is, (W̃ ′, ε̃Ω) is

coherent at uα0
0 . Thus (W̃ ′, ε̃Ω) is a directed closed walk in Ω̃. It follows that (W ′, εΩ) is

a directed closed walk in Ω, and is contained in the walk W as edge multisets. Therefore,
fW ′ ≤ fW . The minimality of fW implies that fW ′ = fW ; this is impossible, for W ′ is
properly contained in W as multisets.

Now the closed walk W has only possible double vertices and double edges, and all double
vertices are cut-vertices. The signed subgraph Ω is obtained from the cycle W̃ by the
projection, identifying some pairs of vertices and some pairs of edges. The unidentified
vertices and edges form the block cycles Ci, and the connected components of identified
vertices and edges form the block paths Pj (of possible zero length) between some pairs
of the cycles Ci. More specifically, viewing each connected component of identified edges
and vertices as a single path-identification, then each path-identification transforms a cycle
exactly into two cycles, the identified path (of possible zero length) connects the two cycles
and becomes a block path. Since each double vertex of W is a cut-vertex of Ω, it turns out
that Ω is a tree-like with “vertices” Ci and “edges” Pj; the cycles Ci must be blocks, the
vertices and edges of Pj are cut-vertices and cut-edges respectively.

Recall the incoherence of (Wi, εΩ) at the double vertex u. It follows that (Ci, εΩ) are
incoherent at the cut-vertices of Ω on Ci and coherent elsewhere. Thus the cycles Ci has
sign (−1)p by Lemma 2, where p is the number of cut-vertices on Ci. We have finished proof
that Ω is an Eulerian cycle-tree, εΩ is a direction of Ω, and (W, εΩ) is a directed Eulerian tour.
Since each edge on the block cycles appears once in W and each edge on the block paths
appears twice in W , we see that fW = IΩ within (Σ, εf ). Therefore f = f(W, εΩ) = [ε, εΩ] IΩ.

Conversely for sufficiency, let’s write [ε, εΩ] IΩ =
∑k

i=1 fi, where fi are conformally inde-
composable flows of (Σ, ε). Let (Ωi, εΩi

) be Eulerian cycle-trees such that fi = [ε, εΩi
] IΩi

.
Since each fi conforms to the sign pattern of f , then Ωi is a signed subgraph of Ω and εΩi

is
the restriction of εΩ on Ωi. The block cycles of Ωi are certainly block cycles of Ω. Consider a
possible block path P of Ωi. If `(P ) = 0, then P is the intersection of two block cycles C1, C2

of Ωi. Clearly, the block cycles C1, C2 of Ωi must be block cycles of Ω, and P is certainly
contained in Ω. If `(P ) > 0, then fi(x) = ±2 for all edges x of P . Since fi conforms to the
sign pattern of f , it forces that [ε, εΩ] IΩ(x) = ±2 for all edges x of P . This means that P
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is a block path of Ω. This means that Ωi is an Eulerian cycle-tree of Ω. Thus Ω = Ωi by
Lemma 11. Therefore k = 1 and f1 = [ε, εΩ] IΩ is conformally indecomposable. ¤
Proposition 14. A signed graph Ω is prime Eulerian if and only if Ω is an Eulerian cycle-
tree.

Proof. If Ω is an Eulerian cycle-tree, then by Proposition 10 there exist an orientation εΩ

on Ω and a closed walk that uses every edge of Ω once but at most twice such that (W, εΩ)
is a directed closed positive walk. It is clear from the structure of Eulerian cycle-tree that
(W, εΩ) does not contain properly directed closed positive subwalks. So Ω is a prime Eulerian
signed graph.

Conversely, if Ω is a prime Eulerian signed graph, then by definition there exist an ori-
entation εΩ on Ω and a closed walk W that uses every edge of Ω at least once but at most
twice, such that (W, εΩ) is a directed closed positive walk and does not properly contain
directed closed positive subwalks. Since fW is a flow of (Ω, εΩ), there is a conformally inde-
composable flow f such that fW ≥ f ≥ 0. By Theorem 13 there exist an Eulerian cycle-tree
T and its direction εT such that f = [εΩ, εT ]IT . Then we must have εT = εΩ on T . Let
(W1, εT ) be a directed closed positive walk on T that follows the direction of W . Then
(W1, εT ) is a directed closed positive subwalk of (W, εΩ). The primeness of (W, εΩ) implies
that (W, εΩ) = (W1, εT ). Hence Ω = T . ¤
Theorem 15 (Half-integer Scale Decomposition). Let Ω be an Eulerian cycle-tree with a
direction εΩ. If Ω is not a signed-graph circuit, then there exists a closed positive walk

W = C0P1C1P2 . . . PnCnPn+1, n ≥ 1

on Ω, satisfying the four conditions.

(a) Ci are all end-block cycles, and Pi are paths of positive lengths.
(b) Each edge of non-end block cycles appears in exactly one of Pi, and each edge of block

paths appears in exactly two of Pi.
(c) Each (CiPi+1Ci+1, εΩ) is a directed circuit of Type III with Cn+1 = C0.
(d) IΩ = 1

2

∑n
i=0 IΣ(CiPi+1Ci+1).

Proof. Let C0, C1, . . . , Cn be end-block cycles with unique cut-vertices u0, u1, . . . , un respec-
tively. Let Qj be block paths, and Rk the paths on non-end block cycles between two next

cut-vertices. Let Ci be lifted to two disjoint directed open paths C̃+
i , C̃−

i between u+
i and u−i .

Let Qj be lifted to two disjoint directed open paths Q̃+
j , Q̃−

j . And let Rk be lifted to disjoint

directed open paths R̃+
k , R̃−

k . Each C̃α
i connects exactly two paths Q̃+

j , Q̃−
j and Q̃+

j C̃α
i Q̃−

j is

a directed open path. Likewise, each R̃γ
k connects exactly two paths Q̃β

j , Q̃β′
j′ with j 6= j′ and

Q̃β
j R̃γ

kQ̃
β′
j′ is a directed open path; subsequently, Q̃−β

j R̃−γ
k Q̃−β′

j′ is a directed open path.

Let us partition the collection {R̃+
k , R̃−

k } of open paths into two disjoint sub-collections

{R̃γk

k } and {R̃−γk

k } arbitrarily. Then the union of the paths in {Q̃+
j , Q̃−

j , R̃γk

k } is a collection

of disjoint directed open paths, having initial and terminal vertices uα
i , uα′

i′ with i 6= i′. Let

P̃1 denote that the directed open path with from a vertex uβ0

0 and its terminal vertex uγ1
s1

;

let P̃2 denote the open path from uβ1
s1

(β1 = −γ1) to uγ2
s2

; and let P̃3 denote the open path
from uβ2

s2
(β2 = −γ2) to uγ3

s3
. Continue this procedure, we obtain a sequence of directed open

paths
P̃1, P̃2, . . . , P̃m+1,
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where P̃i is from u
βi−1
si−1 to uγi

si
with βi = −γi, and uγm+1

sm+1
= uγ0

0 with β0 = −γ0. Note that both

P̃iC̃
+
si
P̃i+1 and P̃iC̃

−
si
P̃i+1 are directed open paths for all i from 0 to n.

Without loss of generality, let us denote by P̃1 the open path from us0
0 to ut1

1 ,
Let us partition the collection {C̃+

i , C̃−
i } of open paths into two disjoint sub-collections

{C̃αi
i } and {C̃−αi

i } arbitrarily. It follows that

W̃ = C̃α0
0 P̃1C̃

α1
1 P̃2 . . . P̃nC̃

αn
n P̃n+1

is a directed closed walk in (Σ̃, ε̃). Note that the projections of C̃αi
i are unbalanced cycles Ci

in Σ, and (Ci, ε) is coherent everywhere except incoherence at ui. Let Pi be the projection
of P̃i. Then the projection of W̃ is the directed closed walk

W = C0P1C1P2 . . . CnPn+1

in (Σ, ε), and each (CiPi+1Ci+1, ε) is a directed circuit of Type III with Cn+1 = C0. Clearly,
each edge of non-end-block cycles appears in exactly one of the paths Pi, and each edge of
block paths appears in exactly two of the paths Pi. Hence IΩ = fW and

IΩ = IC0 + IPn+1 +
n∑

i=1

(
ICi

+ IPi

)
=

1

2

n∑
i=0

IΣ(CiPi+1Ci+1).

¤
The weights on the edges of the cycle-tree in Figure 4 form a conformally indecomposable

flow with respect to the given direction there, which is exactly the characteristic vector of
the cycle-tree. This conformally indecomposable flow can be decomposed into one-half of
the sum of three signed-graph circuit flows as demonstrated in Figure 5.
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Figure 5. A conformally indecomposable flow is decomposed conformally
into one-half of signed-graph circuit flows of Type III.

The half-integer phenomenon in Theorem 15(d) is also appeared in a result of Geelen
and Guenin [9] (Corollary 1.4, p. 283), though our problem of classifying conformally inde-
composable flows and certain optimal problem considered by Geelen and Guenin for signed
graphs are completely different. The half-integer phenomenon in both cases is a consequence
of sign on the edges of signed graphs.

One may consider decomposition of integral flows without conforming the sign patterns.
It is clear that every nontrivial integral flow is a positive integral linear combination of
conformally indecomposable flows. We shall see that each conformally indecomposable flow
can be further decomposed into integral linear combination of signed-graph circuit flows
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Figure 6. A maximal independent set of the Eulerian cycle-tree in Fig. 4

without confirming the sign patterns. So each integral flow is an integral linear combination
of signed-graph circuit flows. This fact is already explicitly given in terms of a maximal
independent set (=matroid basis) in [5] (see Eq. (4.7) of Theorem 4.9, p. 275). For instance,
the signed graph in Figure 6 is an maximal independent set of the Eulerian cycle-tree in
Figure 4. The conformally indecomposable flow in Figure 4 is further decomposed into
signed-graph circuit flows in Figure 7 without confirming the sign patterns. We summarize
the fact into the following Corollary 16.
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Figure 7. A conformally indecomposable flow is decomposed non-
conformally into signed-graph circuit flows.

Corollary 16. (a) If f is a nontrivial integral flow of an oriented singed graph, then 2f can
be conformally decomposed into a positive integral linear combination of signed-graph circuit
flows.

(b) Every nontrivial integral flow of an oriented signed graph can be decomposed (perhaps
conformally perhaps non-conformally) into a positive integral linear combination of some
signed-graph circuit flows.

The following proposition is trivial but explains why there are exactly three natural types
of signed-graph circuits introduced by Zaslavsky [12, 14].

Proposition 17. Let Ω be a signed graph. Then the following statements are equivalent.
(a) Ω is a minimal Eulerian signed graph.
(b) Ω is a minimal Prime Eulerian signed graph.
(c) Ω is a minimal Eulerian cycle-tree.
(d) Ω is a signed-graph circuit.
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